PBR读书笔记四:Sampling Theory

对图像的描绘,本质上是场景重建(reconstruction)信号处理(signal processing),简单来说就是用离散的采样(像素点)来对连续的真实世界进行重建,那么就涉及到采样(sampling)的问题了。

傅立叶分析

傅立叶分析可以用来评估重建函数的质量,同时其被用来在频域上分析不同频率的函数,通常来说,高频率的函数变换的较为频繁、较快;低频率的函数变化的较缓慢。如下是两个函数图像:

7m6Gb6.png

与之对应的,是其在频域上的函数图像:

阅读更多

PBR读书笔记三:Color & Radiometry

众所周知,自然、物理界的光照不是靠RGB三个离散分量描述的,而是由不同强度的不同波长\(\lambda\)的光组成的,因此如果要基于物理地渲染,对于自然光谱的模拟是必不可少的,在pbrtmistuba两款渲染器中,都采用了Spectrum类来承载光谱数据,对于不同波长的数据,我们描述为SPD,aka spectral power distribution,光谱能量分布。

Spectrum

自然界光谱不是离散描述的,于是我们可以像傅立叶变换一样,用一组带系数的基底函数\(c_iB_i(\lambda)\)来逼近实际的波形。

pbrt中,定义了两种实际的Spectrum类,并且使用一个typedef来在实际的使用中切换两者的类型:

1
2
typedef RGBSpectrum Spectrum;
// typedef SampledSpectrum Spectrum;
阅读更多

PBR读书笔记二:Basic Shapes

在整个图形学领域,空间中的物体都是由基本的Shape构成的,比如基本的几何形体:Sphere、Box;或者能够达成更加复杂表现的Mesh等。这一章主要讲述了几种不同的形体的定义和相关计算。

形体基类

PBRT使用Shape类来为所有形体创建了一个基类,reverseOrientation用来决定图形的法线是否翻转(用来确定图形的内、外)。

对于每个形体有如下的基础函数和解释:

1
2
virtual Bounds3f ObjectBound() const = 0;
virtual Bounds3f WorldBound() const;
阅读更多

PBR论文实现:Marschner's/d'Eon Hair Model

在完成GAMES101大作业的时候,选择了Marchner的毛发模型的实现,先后参考了两篇论文,总算是做出来像个东西了。

我阅读的第一篇论文是《Light Scattering from Human Hair Fibers》,这篇文章属于是现在的毛发渲染的开山鼻祖了。

这篇论文开创性地提出了毛发的表皮含芯的模型:

基本模型

作者认为人类的毛发不是单纯的一个柱状模型(Kajiya模型),而是表皮(cuticle)加上柱芯(cortex)的组合。同时,将毛发的不同颜色归因于柱芯对于不同波长光的吸收率不同,从而导致毛发出现不同的颜色。很重要的,这个模型将光线从单纯的反射(brdf)拓展为了多个不同的类别(bcsdf),其中Marschner的这篇论文着重强调了其中的三个组成项:R、TT、RTR,R代表一次反射(reflection),T代表一次在柱芯中的传播(transmission),这里我们也可以得到,R项是没有受到吸收的,所以R项应该是造成高光的项。

阅读更多

PBR读书笔记一:Geometry & Transformation

这会是一个持续更新的系列,用来记录我在阅读《Physically Based Rendering》的一些读书心得和brief。

四元数 Quaternions

之前玩Unity的时候就有过使用四元数的经历,当时还不太明白万向锁和四元数的本质,看了这一章之后遍会有更加深入的体会。

四元数发明的初衷是对于复数的拓展,\(q=(x,y,z,w)=w+x\vec i+y\vec j+z\vec k\),ijk四个量的乘法运算是非交换的。与此同时,\(q=(q_{xyz}, w)\),因此对两个四元数做点乘,两个分量:

\[(q\cdot q')_{xyz} = q_{xyz}\times q'_{xyz} + q_wq'_{xyz} + q'_wq_{xyz}\]

阅读更多